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INTRODUCTION

Infrasound waves propagate in the atmosphere by a well known

mechanism produced by refraction of the waves, return to earth, and

reflect at the surface into the atmosphere for subsequent bounces (see e.g.

reference 1). Figure 1 illustrates this phenomenon with results from a ray

trace model. In this instance three rays are returned to earth from a region

centered at about 50 kilometers in altitude and two from a region near 110

kilometers in altitude. The control of the wave refraction is largely

dominated by the temperature-height profile and inversions; however, a

major influence is also produced by the atmospheric wind profile. Figure 2

illustrates the considerable ray differences for rays moving in the wind

direction (to the right) and in the counter direction (to the left). It obviously

can be expected that infrasonic signal amplitudes will be greatly influenced

by the winds in the atmosphere. The seasonal variation of the high altitude

atmospheric winds is well documented (see e.g. reference 2). Figure 3

illustrates this with average statistics on the observed zonal wind in the

region of 50 + 5 kilometers in altitude. The results are based upon a survey

by Webb (reference 2); Webb terms this parameterization the Stratospheric

Circulation Index (SCI). The very strong seasonal variation has the ability to

exert a major seasonal influence on infrasonic signals. It is our purpose to
obtain a method for the correction of this effect.

METdODOLOGY

There are two possible approaches to the determination of a procedure for

the correction of infrasound signals for the effects of winds. The first of these

is by modeling of infrasonic propagation in the presence of various wind

profiles. We are currently taking this approach with both a ray-trace model

and a normal mode model and hope to show results in the near future. The

second approach is to derive a correction method empirically from a

sufficiently large and consistent data set. This is the method which we report

upon here. The results given here are preliminary in nature and we present

only a simplified outline of the procedures. As indicated in Section IV, more

extensive work in the near future will provide comprehensive results. In the

meantime, we have been applying the results to our measurements (see

reference 3).
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A large data set, which appears to be appropriate for the empirical work, is

given in reference 4. It consists of infrasonic observations by the Sandia

National Laboratory of atmospheric nuclear tests conducted at the Nevada

Test Site (NTS) during the period 1951 to 1962. The observations were made

at nine stations surrounding NTS as shown in figure 4. While several of the

stations are probably too close to the source region to be useful, at least six

stations appear to be appropriate. A total of 80 events are presented by Reed

and cover an explosive yield range from 1/2 to 74 kilotons (HE equivalent).

The measurements were made by a standard set of microbarographs.

This consistently measured and analyzed set of signals, observed at many

times of the year, presents a unique set of data for our purposes.

ANALYSIS AND RESULTS

Since the atmospheric nuclear data are for a variety of yields, and also

have effects due to some variation in height of burst, it is necessary to scale

all data for these two factors. Reed has done this with a W 0.4 scaling law (W

= kilotons HE equivalent) and a height-of-burst functional relation. While

some discussion of both of these scaling relations is appropriate, the

preliminary nature of the present work leads to use of Reed's corrections.

Figure 5 illustrates the resulting scaled data for the St. George, Utah,

station as a function of date. The symbols refer to various test series,

unimportant here, and the line is an eye-fitted relation. Amplitudes are

scaled to a 1 kiloton explosion. The very strong seasonal effect is the major

feature of the data; the much lower amplitude during the summer period

presumably results from the winds contrary to wave propagation to
St. George during summer. It is unfortunate that there are no data for the

period in mid winter, January December. Examination of Reed's results

shows that the seasonal variation changes markedly with station direction
from the test site: northern and southern stations show a much weaker effect

than does St. George. This follows from the fact that those stations are only

slightly affected by the zonal wind and are primary affected by the much

weaker and less variable meridional winds. This supports the hypothesis

that we see primarily the seasonal wind effect in the data variation.

High altitude winds are conventionally measured by rocketsonde (and now

by satellite). The absence of rocketsonde observations for the period covered

by the NTS data leads us to use the statistical SCI data of reference 2 as a

first-order estimator of the atmospheric wind. The eye-fitted lines for each

station (e.g. figure 5) were used to estimate signal amplitudes at monthly

intervals. Figure 6 illustrates the result for St. George, where the wind
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velocity component directed from NTS to St. George is plotted against the
amplitude. Similar relations are determined for each station, using the wind
vector toward the station based upon meridional and zonal SCI values. The
results are reasonably consistent among the stations; however, the nearly east
or west stations, such as St. George, are probably more dependable because of
the strong zonal wind variation there.

The averaged result of the analysis is,

A = Ao 10kV

where A = observed amplitude (mbars)

A o = corrected "zero-wind" amplitude (mb)

k = 0.018 s/meter

V = SCI vector from source to observer meters/s.

The relation permits us to correct all observations for the wind to derive
consistent "zero-wind" amplitudes.

COMMENTARY ON RESULTS

We have applied the method described here to a wide variety of

observations. Where possible, we have used rocketsonde or satellite

observations of the wind profile, deriving from these an effective SCI wind

vector amplitude. Since the actual wind can vary widely from the statistical

SCI, use of statistical values is less dependable. As an example of the use of

the method, we show its application to a set of observations of signals from a

set of earthquakes which were observed at our St. George array, with the

exception of the earthquake at Mb = 7.8, which is from reference 5. All

amplitudes have been scaled to a distance of 1000 kilometers by use of the

factor (R/1000)l.15, where R is the actual range in kilometers. Figure 7

shows the amplitudes uncorrected for wind against the body magnitude, Mb,

for each earthquake. The bars on some observations indicate the range of

interpretation of peak amplitude. Figure 8 shows the same set of data but

with the amplitudes corrected by our method; only statistical SCI winds were

employed. Clearly the effect on the relationship is very large; there is also

the impression that the connection between amplitude and Mb may be
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clearer. However, a mechanism is not now known, so this evidence is
circumstantial. The smallest earthquake, at Mb = 4.6, is an aftershock and
may not be in the same class as the others.

We have not completed our analysis of the nature of the wind effect on
amplitudes and therefore can only speculate on the correction method and its
form. It is clear that two mechanisms can change the amplitude with change
in the wind profile: (1) the number of rays captured at a return layer will
vary depending upon the wind, (2) the distribution of rays on the surface will
depend on the wind profile (e.g., see figure 2). Modeling should help in the
understanding of the correction form.

It should be noted that all of the work reported here applies to those
signals resulting from returns from a 50 kilometer high level. We believe
that signals resulting from the 110 kilometer level require an additional
correction and have formulated a tentative correction formulation. Such
signals, in general, will occur only with near zero wind, or counterwind,
conditions.

FUTUREEFFORTS

We have reported here on our preliminary results. We are now working
on an improved analysis. This will include the following:

1. A comprehensive statistical analysis of the data set resulting in an
improved formulation;

2. Modeling of the effect to better understand its physical basis;

3. A detailed investigation of the "counterwind" signal circumstances,
using appropriate data and modeling.

We wish to acknowledge the support of the Department of Energy Office of
Arms Control for the work supported here.
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Figure 1. Results of a ray trace model showing five sample rays. Rays 1, 2, 3

are refracted and returned from a region near 50 kilometers and

rays 4 and 5 from near 110 kilometers.
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Ray tracing results for propagation with the wind (to the right) and

against the wind (to the left).

SEASONAL VARIATION OF MEAN S.C.I.

E

>

I I I I I I I I I
J F M A M J J A O N D

Figure 3. This illustrates the seasonal variation of the average SCI wind at

White Sands.
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Figure 4. The Sandia Scientific Laboratory network of microbarographs

(crossed circles) surrounding the Nevada Test Site (square).
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Ozonosphere Signal Amplitudes, St. George, Utah
(after J. Reed 4)

Nuclear atmospheric burst scaled signal amplitudes recorded at the

St. George, Utah, microbarograph station against date.
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Monthly average values of nuclear atmospheric burst scaled signal

amplitude versus statistical SCI velocity for St. George.
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Figure 7. Scaled amplitudes of earthquake infrasonic signals versus

earthquake body magnitude, Mb. Uncorrected for wind.
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Same data as in Figure 7, but corrected for wind.
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